skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Demir, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biological microorganisms and artificial micro-swimmers often locomote in heterogeneous viscous environments consisting of networks of obstacles embedded into viscous fluid media. In this work, we use the squirmer model and present a numerical investigation of the effects of shape on swimming in a heterogeneous medium. Specifically, we analyse the microorganism's propulsion speed as well as its energetic cost and swimming efficiency. The analysis allows us to probe the general characteristics of swimming in a heterogeneous viscous environment in comparison with the case of a purely viscous fluid. We found that a spheroidal microorganism always propels faster, expends less energy and is more efficient than a spherical microorganism in either a homogeneous fluid or a heterogeneous medium. Moreover, we determined that above a critical eccentricity, a spheroidal microorganism in a heterogeneous medium can swim faster than a spherical microorganism in a homogeneous fluid. Based on an analysis of the forces acting on the squirmer, we offer an explanation for the decrease in the squirmer's speed observed in heterogeneous media compared with homogeneous fluids. 
    more » « less
  2. The development of novel drug delivery systems, which are revolutionizing modern medicine, is benefiting from studies on microorganisms’ swimming. In this paper we consider a model microorganism (a squirmer) enclosed in a viscous droplet to investigate the effects of medium heterogeneity or geometry on the propulsion speed of the caged squirmer. We first consider the squirmer and droplet to be spherical (no shape effects) and derive exact solutions for the equations governing the problem. For a squirmer with purely tangential surface velocity, the squirmer is always able to move inside the droplet (even when the latter ceases to move as a result of large fluid resistance of the heterogeneous medium). Adding radial modes to the surface velocity, we establish a new condition for the existence of a co-swimming speed (where squirmer and droplet move at the same speed). Next, to probe the effects of geometry on propulsion, we consider the squirmer and droplet to be in Newtonian fluids. For a squirmer with purely tangential surface velocity, numerical simulations reveal a strong dependence of the squirmer's speed on shapes, the size of the droplet and the viscosity contrast. We found that the squirmer speed is largest when the droplet size and squirmer's eccentricity are small, and the viscosity contrast is large. For co-swimming, our results reveal a complex, non-trivial interplay between the various factors that combine to yield the squirmer's propulsion speed. Taken together, our study provides several considerations for the efficient design of future drug delivery systems. 
    more » « less
  3. A squirmer enclosed in a droplet represents a minimal model for some drug delivery systems. In the case of a spherical squirmer swimming with a spherical cage in a Newtonian fluid [Reigh et al., “Swimming with a cage: Low-Reynolds-number locomotion inside a droplet,” Soft Matter 13, 3161 (2017)], it was found that the squirmer and droplet always propelled in the same direction albeit at different speeds. We expand the model to include particles' shape and medium's heterogeneity, two biologically relevant features. Our results reveal a novel behavior: a configuration that consists of a spherical squirmer and a spheroidal droplet in highly heterogeneous media yields a backward motion of the droplet. 
    more » « less
  4. null (Ed.)